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We consider the solution of the problem dealing with the radiation of
a thin long rod in a vacuum. It is demonstrated that under the con-
ditions of a quasi-steady regime (given boundary conditions of the
first to third kind) it is possible to avoid the operation of an exact
solution for the differential equation.

Let us consider a system consisting of a thin long
rod which is fastened to a solid body at one end and
placed inside a chamber from which the air has been
evacuated. The vacuum is such that there is no con-
vective heat transfer between the surface of the rod
and the medium. A certain quantity of heat Q is trans-
ferred to the rod from the solid body and this heat is
transmitted along the rod by means of conduction and
removed from the surface through radiation.

We will assume that the temperature fields over
the cross section of the rod are constant and that the
temperature distribution along the axis of the rod is
independent of time, i.e., it is treated as a steady
regime.

Let Ty denote the temperature at the initial cross
section of therod (x = 0), andlet T; denote the temper-
ature at the final cross section (x = 1), and let Ty de-
note the temperature of the chamber walls. Moreover,
in addition, c; will denote the radiationfrom the lateral
surface of the rod, while the reference coefficient for
the rod-chamber system is denoted cpef [1~3]
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When F; > Fy, we will have cpef & 4.
The change in the quantity of heat passing through
the transverse cross section of the rod is equal to*

Q jo__d(_ )dx, (1)
dx dx dx

where f is the area of the transverse cross section
and A is the coefficient of thermal conductivity.
In the steady regime this quantity of heat is equal to

dQ=c P[T*—T3]10-24s, (2)

where P is the perimeter of the rod in the section
x; dS = (1 — 1/4(d6/dx)*)'/? dx is the differential of the
curvilinear surface coordinate.

*The minus sign in the right-hand member of the
equation denotes the fact that when T > T, the heat
flow along the rod is reduced by the radiation from
the lateral surface.

Thus, from (1) and (2) we have (f = const)
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We integrate Eq. (3) under the following boundary
conditions:

x =0 T=Ty, 4)
x=1 T=T,
5)
d
Y (_d%)ﬁ, F = Goegl 105 (75 —T).

The last indicates that all of the heat reaching the
end of the rod is removed by radiation through the
end surface. ‘

Let A = (cpefP/Af) 107 denote some constant char-
acterizing the geometry and material of the rod.

Double integration of Eq. (3) yields
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and
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The solution for the law governing the distribution
of temperature along the rod cannot thus be found in
explicit form (to take the integral in the left-hand part
of Eq. (7), we must resort to series expansion). How-
ever, as will become evident from the following, this
circumstance will not interfere with the attainment of
a final result.

Since for x = ! we have from (6) that
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dx

using condition (5), after simple transformations, we
have
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Since the quantity of heat given up to the ambient
medium through the side surface in the steady regime
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is equal to the quantity of heat entering the rod through

its closed end,*
ar
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With consideration of conditions (10) and (4), from
(8) we thus obtain
ahy
dx )x=0
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and finally
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Equating (9) and (12), we obtain
A =
_ (@f?) = ced 07477 — T3)
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This expression can be used for an experimental
determination of the thermal conductivity A, if we
know the radiation factor c,qf.¥* However, it is best to
use this method to determine the coefficient c,.qp if A
has been found by means of some other method.

*For a quasi-steady regime of regular heating, we
must take into consideration the quantity of heat ac-
cumulated by the mass of the rod material.

**For example, assuming Cpef ¥ ¢; and blackening
the surface of the specimen, we will have Cpef ® ¢y =
=¢o = 5.67 W/m?.deg!
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In the latter case, expression (13) should be solved
for Cpef ™ cy(Fy > Fi).

If we assume that the radiation through the end face
is negligibly small in comparison with the flow through
the side surface (T} = Ty}, we will correspondingly
obtain
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NOTATION

T is the temperature, °K; F is the surface, mz;
Q is the heat per unittime, W; P is the perimeter, m;
f is the cross~sectional area, m?; A is the thermal
conductivity, W/m +deg; c is the radiation factor,
W/m? 'deg4; x is the coordinate along axis, m; lis
the bar length, m; 0 is the initial section; I is the
final section; 1 is the bar; 2 is the chamber wall.
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